Pressure Gauge Designs
Two common reasons for gauge (and switch) failure are pipe vibration and water condensation, which in colder climates can freeze and damage the gauge housing. Figure 5-1 illustrates the design of both a traditional and a more reliable, "filled" pressure gauge. The delicate links, pivots, and pinions of a traditional gauge are sensitive to both condensation and vibration. The life of the filled gauge is longer, not only because it has fewer moving parts, but because its housing is filled with a viscous oil. This oil filling is beneficial not only because it dampens pointer vibration, but also because it leaves no room for humid ambient air to enter. As a result, water cannot condense and accumulate.
|
Figure 5-2: Pressure Gauge Accessories
|
Available gauge features include illuminated dials and digital readouts for better visibility, temperature compensation to correct for ambient temperature variation, differential gauges for differential pressures, and duplex gauges for dual pressure indication on the same dial. Pressure gauges are classified according to their precision, from grade 4A (permissible error of 0.1% of span) to grade D (5% error).